Filter data based on a single condition using Boolean indexing:
import pandas as pd
from myapp.models import MyModel
data = pd.read_csv('data.csv')
filtered_data = data[data['column1'] > 10] # Filter data where 'column1' is greater than 10
for index, row in filtered_data.iterrows():
my_model = MyModel(field1=row['column1'], field2=row['column2'])
my_model.save()
Filter data based on multiple conditions using Boolean indexing:
import pandas as pd
from myapp.models import MyModel
data = pd.read_csv('data.csv')
filtered_data = data[(data['column1'] > 10) & (data['column2'] == 'A')] # Filter data based on multiple conditions
for index, row in filtered_data.iterrows():
my_model = MyModel(field1=row['column1'], field2=row['column2'])
my_model.save()
Filter data using the query() method:
import pandas as pd
from myapp.models import MyModel
data = pd.read_csv('data.csv')
filtered_data = data.query("column1 > 10") # Filter data using a query
for index, row in filtered_data.iterrows():
my_model = MyModel(field1=row['column1'], field2=row['column2'])
my_model.save()
Filter data using the isin() method:
import pandas as pd
from myapp.models import MyModel
data = pd.read_csv('data.csv')
filtered_data = data[data['column1'].isin(['A', 'B', 'C'])] # Filter data based on specific values in 'column1'
for index, row in filtered_data.iterrows():
my_model = MyModel(field1=row['column1'], field2=row['column2'])
my_model.save()
Filter data using string methods:
import pandas as pd
from myapp.models import MyModel
data = pd.read_csv('data.csv')
filtered_data = data[data['column1'].str.contains('keyword')] # Filter data based on a keyword in 'column1'
for index, row in filtered_data.iterrows():
my_model = MyModel(field1=row['column1'], field2=row['column2'])
my_model.save()
Filter data using regular expressions:
import pandas as pd
import re
from myapp.models import MyModel
data = pd.read_csv('data.csv')
filtered_data = data[data['column1'].str.contains(r'regex_pattern', flags=re.IGNORECASE, regex=True)] # Filter data using a regex pattern in 'column1'
for index, row in filtered_data.iterrows():
my_model = MyModel(field1=row['column1'], field2=row['column2'])
my_model.save()
Filter data based on date or time:
import pandas as pd
from myapp.models import MyModel
data = pd.read_csv('data.csv')
data['date_column'] = pd.to_datetime(data['date_column']) # Convert 'date_column' to datetime if necessary
filtered_data = data[data['date_column'] > '2022-01-01'] # Filter data based on a date condition
for index, row in filtered_data.iterrows():
my_model = MyModel(field1=row['column1'], field2=row['column2
Top comments (0)