Debug School

rakesh kumar
rakesh kumar

Posted on • Updated on

List down different way to select and drop data in django.

Note:
we cannot fill nan value for object type we have to convert it into float or int then fill by mean
we cannot fill nan value for object type we can fill by most frequent means by mode

Selecting specific columns and saving to a Django model:

import pandas as pd
from myapp.models import MyModel

data = pd.read_csv('data.csv')
selected_data = data[['column1', 'column2']]  # Select desired columns
for index, row in selected_data.iterrows():
    my_model = MyModel(field1=row['column1'], field2=row['column2'])
    my_model.save()
Enter fullscreen mode Exit fullscreen mode

Filtering rows based on a condition and saving to a Django model:

import pandas as pd
from myapp.models import MyModel

data = pd.read_csv('data.csv')
filtered_data = data[data['column1'] > 10]  # Filter rows based on condition
for index, row in filtered_data.iterrows():
    my_model = MyModel(field1=row['column1'], field2=row['column2'])
    my_model.save()
Enter fullscreen mode Exit fullscreen mode

Selecting and filtering rows using query and saving to a Django model:

import pandas as pd
from myapp.models import MyModel

data = pd.read_csv('data.csv')
selected_data = data.query("column1 == 'A'")  # Select rows based on a query
for index, row in selected_data.iterrows():
    my_model = MyModel(field1=row['column1'], field2=row['column2'])
    my_model.save()
Enter fullscreen mode Exit fullscreen mode

Dropping specific columns and saving the remaining data to a Django model:

import pandas as pd
from myapp.models import MyModel

data = pd.read_csv('data.csv')
data.drop(['column1', 'column2'], axis=1, inplace=True)  # Drop desired columns
for index, row in data.iterrows():
    my_model = MyModel(field1=row['column3'], field2=row['column4'])
    my_model.save()
Enter fullscreen mode Exit fullscreen mode

Example

Image description

Image description

Image description

Dropping rows based on a condition and saving the remaining data to a Django model:

import pandas as pd
from myapp.models import MyModel

data = pd.read_csv('data.csv')
data = data[data['column1'] != 'A']  # Drop rows based on condition
for index, row in data.iterrows():
    my_model = MyModel(field1=row['column1'], field2=row['column2'])
    my_model.save()
Enter fullscreen mode Exit fullscreen mode

Selecting rows based on a range of indices and saving to a Django model:

import pandas as pd
from myapp.models import MyModel

data = pd.read_csv('data.csv')
selected_data = data.loc[5:10]  # Select rows based on index range
for index, row in selected_data.iterrows():
    my_model = MyModel(field1=row['column1'], field2=row['column2'])
    my_model.save()
Enter fullscreen mode Exit fullscreen mode

Dropping duplicate rows and saving the unique data to a Django model:

import pandas as pd
from myapp.models import MyModel

data = pd.read_csv('data.csv')
data.drop_duplicates(inplace=True)  # Drop duplicate rows
for index, row in data.iterrows():
    my_model = MyModel(field1=row['column1'], field2=row['column2'])
    my_model.save()
Enter fullscreen mode Exit fullscreen mode

Selecting rows based on multiple conditions and saving to a Django model:

selected_data = data[(data['column1'] == 'A') & (data['column2'] > 10)]  # Select rows based on multiple conditions
for index, row in selected_data.iterrows():
    my_model = MyModel(field1=row['column1'], field2=row['column2'])
    my_model.save()
Enter fullscreen mode Exit fullscreen mode

Dropping missing values (NaN) and saving the clean data to a Django model:

import pandas as pd
from myapp.models import MyModel

data = pd.read_csv('data.csv')
data.dropna(inplace=True)  # Drop rows with missing values

for index, row in data.iterrows():
    my_model = MyModel(field1=row['column1'], field2=row['column2'])
    my_model.save()
Enter fullscreen mode Exit fullscreen mode

In this example, we import data from a CSV file using pd.read_csv(). Then, we perform various data selection and dropping operations using different methods and conditions. Finally, we iterate over the resulting data using iterrows() and save the selected or cleaned data to a Django model (MyModel) using the save() method.

==================================================================

Sure! Here are 9 different ways to remove irrelevant columns from a dataset using various Python libraries, along with examples and their corresponding output:

Using pop() method from Pandas:

import pandas as pd

# Example dataset
data = pd.DataFrame({
    'col1': [1, 2, 3],
    'col2': [4, 5, 6],
    'col3': [7, 8, 9]
})

# Remove column 'col1'
data.pop('col1')
print(data)
Enter fullscreen mode Exit fullscreen mode

Output:

   col2  col3
0     4     7
1     5     8
2     6     9
Enter fullscreen mode Exit fullscreen mode

Using drop() method from Pandas:

import pandas as pd

# Example dataset
data = pd.DataFrame({
    'col1': [1, 2, 3],
    'col2': [4, 5, 6],
    'col3': [7, 8, 9]
})

# Remove column 'col1'
data = data.drop('col1', axis=1)
print(data)
Enter fullscreen mode Exit fullscreen mode

Output:

   col2  col3
0     4     7
1     5     8
2     6     9
Enter fullscreen mode Exit fullscreen mode

Using list comprehension to select relevant columns:

import pandas as pd

# Example dataset
data = pd.DataFrame({
    'col1': [1, 2, 3],
    'col2': [4, 5, 6],
    'col3': [7, 8, 9]
})

# Select relevant columns
relevant_columns = ['col2', 'col3']
data = data[relevant_columns]
print(data)
Enter fullscreen mode Exit fullscreen mode

Output:

   col2  col3
0     4     7
1     5     8
2     6     9
Enter fullscreen mode Exit fullscreen mode

Using iloc[] to select column indices:

Copy code
import pandas as pd

# Example dataset
data = pd.DataFrame({
    'col1': [1, 2, 3],
    'col2': [4, 5, 6],
    'col3': [7, 8, 9]
})

# Select relevant columns by index
data = data.iloc[:, 1:]
print(data)
Enter fullscreen mode Exit fullscreen mode

Output:

   col2  col3
0     4     7
1     5     8
2     6     9
Enter fullscreen mode Exit fullscreen mode

Using loc[] to select column names:

import pandas as pd

# Example dataset
data = pd.DataFrame({
    'col1': [1, 2, 3],
    'col2': [4, 5, 6],
    'col3': [7, 8, 9]
})

# Select relevant columns by name
data = data.loc[:, ['col2', 'col3']]
print(data)
Enter fullscreen mode Exit fullscreen mode

Output:

   col2  col3
0     4     7
1     5     8
2     6     9
Enter fullscreen mode Exit fullscreen mode

Using NumPy's indexing to select relevant columns:

import pandas as pd
import numpy as np

# Example dataset
data = pd.DataFrame({
    'col1': [1, 2, 3],
    'col2': [4, 5, 6],
    'col3': [7, 8, 9]
})
Enter fullscreen mode Exit fullscreen mode

Select relevant columns using Num

Top comments (0)