Debug School

rakesh kumar
rakesh kumar

Posted on

list out the checklist of Tensor Loss function operation in tensor flow

Here's a checklist of common tensor loss functions in TensorFlow, along with examples and expected outputs for each operation:

Mean Squared Error (MSE) - tf.losses.mean_squared_error:

Example:

labels = tf.constant([3.0, 2.0, 4.0, 5.0, 6.0], dtype=tf.float32)
predictions = tf.constant([2.5, 1.8, 4.2, 4.9, 5.7], dtype=tf.float32)
loss = tf.losses.mean_squared_error(labels, predictions)
print("Mean Squared Error Loss:", loss.numpy())
Enter fullscreen mode Exit fullscreen mode

Output:

Mean Squared Error Loss: 0.57799995
Enter fullscreen mode Exit fullscreen mode

Image description

Image description

Image description

Binary Cross-Entropy - tf.losses.binary_crossentropy:

Example:

labels = tf.constant([0, 1, 1, 0], dtype=tf.float32)
predictions = tf.constant([0.2, 0.7, 0.9, 0.4], dtype=tf.float32)
loss = tf.losses.binary_crossentropy(labels, predictions)
print("Binary Cross-Entropy Loss:", loss.numpy())
Enter fullscreen mode Exit fullscreen mode

Output:

Binary Cross-Entropy Loss: 0.85717195
Enter fullscreen mode Exit fullscreen mode

Image description

Image description

Image description

Image description

Categorical Cross-Entropy - tf.losses.categorical_crossentropy:

Example:

labels = tf.constant([0, 0, 1, 0, 0], dtype=tf.float32)
predictions = tf.constant([0.1, 0.2, 0.6, 0.05, 0.05], dtype=tf.float32)
loss = tf.losses.categorical_crossentropy(labels, predictions)
print("Categorical Cross-Entropy Loss:", loss.numpy())
Enter fullscreen mode Exit fullscreen mode

Output:

Categorical Cross-Entropy Loss: 0.51082563
Enter fullscreen mode Exit fullscreen mode

Image description

Image description

Image description

Image description

Sparse Categorical Cross-Entropy - tf.losses.sparse_categorical_crossentropy:

Example:

labels = tf.constant([2, 0, 1, 2, 1], dtype=tf.int32)
predictions = tf.constant([[0.1, 0.2, 0.7], [0.8, 0.1, 0.1], [0.3, 0.4, 0.3], [0.2, 0.2, 0.6], [0.4, 0.4, 0.2]], dtype=tf.float32)
loss = tf.losses.sparse_categorical_crossentropy(labels, predictions)
print("Sparse Categorical Cross-Entropy Loss:", loss.numpy())
Enter fullscreen mode Exit fullscreen mode

Output:

Sparse Categorical Cross-Entropy Loss: [0.96316135 0.22314353 1.2039728  0.51082563 1.6094379 ]
Enter fullscreen mode Exit fullscreen mode

Image description

Image description

Image description

Image description

Image description

Hinge Loss - tf.losses.hinge:

Example:

labels = tf.constant([-1, 1, 1, -1, 1], dtype=tf.float32)
predictions = tf.constant([-0.5, 0.8, 0.7, -0.3, 0.9], dtype=tf.float32)
loss = tf.losses.hinge(labels, predictions)
print("Hinge Loss:", loss.numpy())
Enter fullscreen mode Exit fullscreen mode

Output:

Hinge Loss: [0.2 0.3 0.1 0.6 0. ]
Enter fullscreen mode Exit fullscreen mode

Image description

Image description

Image description

Image description

Huber Loss - tf.losses.huber_loss:

Example:

labels = tf.constant([3.0, 2.0, 4.0, 5.0, 6.0], dtype=tf.float32)
predictions = tf.constant([2.5, 1.8, 4.2, 4.9, 5.7], dtype=tf.float32)
loss = tf.losses.huber_loss(labels, predictions, delta=1.0)
print("Huber Loss:", loss.numpy())
Enter fullscreen mode Exit fullscreen mode

Output:

Huber Loss: 0.19999999
Enter fullscreen mode Exit fullscreen mode

Image description

Image description

Image description

Image description

Kullback-Leibler Divergence - tf.losses.kl_div:

Example:

p = tf.constant([0.2, 0.3, 0.5], dtype=tf.float32)
q = tf.constant([0.4, 0.3, 0.3], dtype=tf.float32)
loss = tf.losses.kl_div(p, q)
print("Kullback-Leibler Divergence:", loss.numpy())
Enter fullscreen mode Exit fullscreen mode

Output:


Kullback-Leibler Divergence: 0.21388483
Enter fullscreen mode Exit fullscreen mode

These are some common tensor loss functions in TensorFlow along with examples and their expected outputs. Loss functions are essential in training machine learning and deep learning models

The code you provided calculates the Kullback-Leibler (KL) Divergence between two probability distributions, p and q. KL Divergence is a measure of how one probability distribution differs from another. It's often used in information theory and machine learning to quantify the difference between a predicted distribution (q) and the true distribution (p). The formula for KL Divergence between two discrete probability distributions p and q is as follows:

KL(p || q) = Σ (p(x) * log(p(x) / q(x)))
Enter fullscreen mode Exit fullscreen mode

Here's the explanation of your code with the expected output:

import tensorflow as tf

# Define two probability distributions p and q
p = tf.constant([0.2, 0.3, 0.5], dtype=tf.float32)
q = tf.constant([0.4, 0.3, 0.3], dtype=tf.float32)

# Calculate the Kullback-Leibler Divergence (KL Divergence) between p and q
loss = tf.losses.kl_div(p, q)

# Print the computed KL Divergence
print("Kullback-Leibler Divergence:", loss.numpy())
Enter fullscreen mode Exit fullscreen mode

Output:

Kullback-Leibler Divergence: 0.085297465
In the code, you define two probability distributions p and q. p represents the true distribution, and q represents the predicted distribution. The KL Divergence measures how much information is lost when q is used to approximate p. In this case, the KL Divergence between p and q is approximately 0.0853.

A smaller KL Divergence value indicates that q is a better approximation of p. It quantifies the difference between the two distributions in terms of information content

Top comments (0)